THE CONFORMATION OF Salmonella O-ANTIGENIC OLIGOSAC-CHARIDES OF SEROGROUPS A, B, AND D₁ INFERRED FROM ¹H- AND ¹³C-NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY*

KLAUS BOCK, MORTEN MELDAL.

Department of Organic Chemistry, The Technical University of Denmark, 2800 Lyngby (Denmark)

DAVID R. BUNDLE, TOMMY IVERSEN, B. MARIO PINTO,

Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario K1A OR6 (Canada)

PER J. GAREGG, INGEMAR KVANSTROM, THOMAS NORBERG.

Department of Organic Chemistry, Arrhenius Laboratory, University of Stockholm, S-106 91 Stockholm (Sweden)

ALF A. LINDBERG, AND STEFAN B. SVENSON

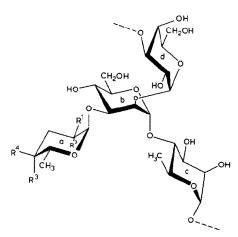
Department of Bacteriology, National Bacteriological Laboratory, S-105 21 Stockholm (Sweden) (Received October 11th, 1983; accepted for publication, January 4th, 1984)

ABSTRACT

The conformational model derived by the HSEA calculation method was used to interpret the n.m.r. data for solutions of oligosaccharides corresponding to the Salmonella serogroups A, B, and D₁ antigenic determinants. The favored conformer, derived by calculation, accounted for the observed, chemical-shift changes and accurately predicted the existence and magnitude of inter-ring proton n.O.e.'s. Extensive proton-density and compression of proton, Van der Waals radii were correlated with deshielding of specific proton-resonances. The model of lipopolysaccharide conformation accounts for the known antigenic properties of Salmonella O-antigens.

INTRODUCTION

Molecular modeling of Salmonella lipopolysaccharides (LPS), based on HSEA calculations, was presented in the preceding paper¹. Since n.m.r. spectroscopy is currently the only experimental technique capable of assessing the validity of these calculations and also the actual preferred conformation of oligosaccharides in aqueous solution, we describe herein the experimental evidence for the proposed conformation. These inferences are based upon analyses of the n.m.r. parameters of a large number of synthetic glycosides varying in size from mono- up


^{*}Dedicated to Professor Raymond U. Lemieux.

to tetra-saccharides. In addition, larger oligosaccharides, from single repeatingunits up to icosasaccharides, containing five repeating units were studied. These were obtained by phage-mediated hydrolysis of the Serogroup B lipopolysaccharide².

Oligosaccharides and polysaccharides are not rigid bodies and n.m.r. measurements provide data that may only be interpreted in terms of a time-averaged conformation, a hypothetical entity, which is the composite of all those conformational states that are appreciably populated. Since hexopyranose sugars exist in stable chair-conformations, which are adequately represented as a rigid entity, the description of oligosaccharide conformation may be reduced to a definition of permissible ϕ and ψ values, i.e., the amplitude of the glycosidic torsional-angles. These angles were defined by semiempirical calculations in the preceding paper (HSEA calculations)¹, and it is possible to generate sets of interatomic distances from the model repeating-unit, which corresponds to the preferred conformation. The interatomic distances may be compared with nuclear Overhauser enhancements (n.O.e.'s) and specific deshielding-effects in ¹H-n.m.r. spectra, and, together with ^{3}J heteronuclear coupling-constants, which provide an estimate of the ψ torsional angle, these n.m.r. data define the "average" conformation of the polysaccharide repeating unit in aqueous solution. To date, agreement between ¹H- and ¹³C-n.m.r. data and HSEA-derived conformations for oligosaccharides corresponding to the human, blood-group determinants has been remarkably good³⁻⁵. LPS O-antigens of Shigella flexneri⁶ and glycan chains of glycoproteins have also been studied^{7,8}. As the HSEA approach may now be considered a predictive tool, we have chosen to apply this approach to a set of structurally related and immunologically important molecules. These are the O-antigens of Salmonella Serogroups A, B, and D₁ for which a considerable body of serological data exists^{9,10}. A large portion of these data may be rationalized on the basis of the primary structure 10-12, and, it is to be hoped, the conformation. Reliable experimental support for the empirically derived conformations of these structures is therefore most desirable, and this evidence is provided by the following n.m.r. measurements.

RESULTS AND DISCUSSION

The preferred conformations of oligosaccharides in solution may be reliably inferred from n.m.r. data only after rigorous assignment of all ¹H and ¹³C resonances. This is most easily achieved for complex oligosaccharides by examination of model compounds which constitute essential elements of the parent structure. When this process is completed, measurement of n.O.e.'s for specific proton-resonances provides information simultaneously on intra- and inter-residue, proton-proton distances. These data are compared with interatomic distances derived from the coordinates of the preferred conformation, calculated by the HSEA method, and further extrapolations are possible by correlation of short oxygen-proton distances with specific deshielding-effects. It is also possible to obtain an estimate of

Scheme 1. The chemical repeating-unit +3- α -D-Galp- $(1\rightarrow 2)$ -[3,6-dideoxy- α -D-hexopyranosyl- $(1\rightarrow 3)$ - α -D-Manp- $(1\rightarrow 4)$ - α -L-Rhap- $(1\rightarrow 4)$ - α -D-D-Galp- $(1\rightarrow 4)$ - α -D-Manp- $(1\rightarrow 4)$ - α -L-Rhap- $(1\rightarrow 4)$ - α -D-D-Galp- $(1\rightarrow 4)$ - α -D-Galp- α -D-Galp- α -D-Galp-

Compound	Saccharide	Aglycon	3,6-D	ideoxyh	exose		Name	Ref.
	sequence		R^1	R^2	R^3	R ⁴		
1	$a \rightarrow b \rightarrow c \rightarrow d$	p-NO ₂ C ₆ H ₄	ОН	Н	Н	ОН	Par	14
2	$a \rightarrow b \rightarrow c \rightarrow d$	p-NO ₂ C ₆ H ₄	OH	H	OH	H	Abe	14
3	$a \rightarrow b \rightarrow c \rightarrow d$	p-NO ₂ C ₆ H ₄	Н	OH	Н	OH	Tyv	14
4	$d \rightarrow (a \rightarrow) b \rightarrow c$	(CH2)8CO2Me	OH	H	H	OH	Par	15
5	$d \rightarrow (a \rightarrow) b \rightarrow c$	(CH2)8CO2Me	OH	Н	OH	H	Abe	16
6	$d \rightarrow (a \rightarrow) b \rightarrow c$	H	OH	Н	OH	H	Abe	2
7	$[d \rightarrow (a \rightarrow) b \rightarrow c]_2$	H	OH	H	ОН	H	Abe	2
8	$d \rightarrow (a \rightarrow) b \rightarrow c$	$(CH_2)_8CO_2Me$	Н	OH	Н	OH	Tyv	15
9	$d \rightarrow (a \rightarrow) b \rightarrow c$	(CH ₂) ₈ CO ₂ Me	H	OH	H	ОН	Asc	15
10	d→(a→)b	(CH2)8CO2Me	OH	Н	H	OH	Par	17
11	$d \rightarrow (a \rightarrow) b$	(CH2)8CO2Me	OH	H	OH	H	Abe	18
12	$d \rightarrow (a \rightarrow) b$	(CH ₂) ₈ CO ₂ Me	H	OH	H	OH	Tyv	17
13	$d \rightarrow b \rightarrow c$	(CH2)8CO2Me					•	16
14	b→c→d	p-NO ₂ C ₆ H ₄						14
15	a→b	p-NO ₂ C ₆ H ₄	OH	H	H	OH	Par	19
16	a→b	p-NO ₂ C ₆ H ₄	OH	H	OH	H	Abe	20,2
17	a→b	(CH ₂) ₈ CO ₂ Me	OH	H	OH	H	Abe	21,2
18	a→b	p-NO ₂ C ₆ H ₄	H	OH	H	OH	Tyv	24
19	b→c	p-NO ₂ C ₆ H ₄					•	14
20	b→c	(CH ₂) ₈ CO ₂ Me						16
21	c→d	p-NO ₂ C ₆ H ₄						14
22	d→b	(CH ₂) ₈ CO ₂ Me						17
23	a	Me	OH	H	H	OH	Par	
24	a	Me	OH	Н	OH	H	Abe	
25	a	Me	H	ОН	Н	ОН	Tyv	
26	d	p-NO ₂ C ₆ H ₄					-	
27	d	(CH ₂) ₈ CO ₂ Me						
28	b	$p\text{-NO}_2\text{C}_6\text{H}_4$						
29	b	(CH ₂) ₈ CO ₂ Me						
30	c	p-NO ₂ C ₆ H ₄						
31	c	(CH2)8CO2Me						

TABLEI

There is a cut my call still () And corpling constant of the Porcornor 1-31

Сотр.	Structure	3,6-Didehex	Unut																							
									þ							C				ļ	ĺ	p				
			H-I	Н-2	Н.3	H-3'	H-4 H-5	5 H-6	H-I	Н-2	Н-3	H-4	Н-5	9-H	H-6'	H-I	Н-2	Н-3	H-4	Н-5	9-Н	Н-1	Н-2 Н-3	H-4 H-5	9-Н	,9-H
_	a→b→c→d	Par	3.8	383 45 110	180	2 16 4 5	34037 95 63	78 1 23 3	500 10	4 13	3.94	3 91	4 03	388	3.81 5 0, 12 0	5 12 1.1	4 13	400 95	3.60 9.5	3.98 6.3	34	5.70 3.0	4 15↔4.11	4 10	373 3	.69 0, 12 0
7	a→b→c→d	Abe	36	40.57	207	198	391413 05 63	13 1.16	500	4 12	3 92	3 90	4.02	3.88	3.81 5.0, 12.5	5 11 1.8	4.12	4 00 9 5	3.60	398	1 35	5 71	4.15↔4 11	4 09	373 3	3.70 5 0, 12.0
ю	P ↑ ↑ ↑ ↑ ↑ • • • • • • • • • • • • • • •	T)yv	4 88 1 5	800	25.25	2.06 4.5	3643 956	81 126 3	499 15	4 11 3 0	3 92 9 5	3.83	4 03	3 88 2 0	3 81 5 0, 12 0	\$ 11 1.5	4.14 3.2	4 00 9.5	3.60 9.5	3 98 6 3	1 36	5.70 3.0	4 15++4	11 4 08	3.73 3. 7.5 5	.69 0, 12 0
4	a→b→c→d	Par	5 05 3 8	3.81 12.0 5.5	128	2 13 4 3	336369 95 6.4	99 123 	5 25 1 6	3 99 2 9	4 00 9 4	3 79	3 92	3 85 2.8	3.79 4 5, 12 0	4 <i>7</i> 7 19	3 9) 3 4	3 81 9 4	3 51 9 4	3.76 6.5	1.32	38	3.78 3 90 10 2 3 3	4 00 4.03	374 3 50 6	68 5,11.3
ın.	d→(a→)b→c	Abe	5 08 3 5	2 S S S S S S S S S S S S S S S S S S S	8	- 8	3874	07 1.18 6	5 27 2 0	3 97 2 5	4 01 9 8	380	3 97	3 84 2 2	3.79 4.5, 12.1	4.77	3 91 3 2	3 83 9.4	3.51 9.4	3.78 6.5	1 32	5.14	3 77 3,89 10 2 3 1	3 98 4 02	373 3. 60 6	.68 0.120
9	d→(a→)b→c	Abe	5 11	4 07	200	2 00↔1.96	39041	1 118	531	4.03	3 92		4 07	3 88	383	5 12	394	3 92	354	399	1 33		80 3 94	4 01 4 09	۶.4	72
7	$d \rightarrow (a \rightarrow) b \rightarrow c$	Abc	5 09	4.02	1 97	1 97		0 116	5.29	396	4 8	3.91	3 %	, % , %	.8 c	250	96.4	397	3.55	391	1 32		3.90	3.99 4 05	. 2 .	69 69 7 13 3
7	$d{\rightarrow} (a{\rightarrow})b{\rightarrow} c$	Abe		4 02	1 97	197	386	0 116	530	96.4	4 4	3 91	3 96	2 % C	2 80 7	28	3 92	3.92	3.51	38.5	1 30		98.	4 06 4 02	22.	69 7 12 3
œ	d(T))	Tyv	4 88	4 05 3 1	179	204	3603	75 1.25 3	5.26 1.8	398	4 03 9 3	3.94	3 93	384	3.78 3.8, 11.7	477	3 91 3 6	3.81 9.4	3.51 9.4	3.78 6.5	131	39	379 389 104 32	3 98 4 03 0 8	374 3	3.68 63,110
•	d→(a→)b→c	Asc	4 77	3.95	21.88	3.7	3 61 3 8 9.2 6 3	89 123 3	5 27 1 8	4 15 2 9	3.96 9.4	3.90 9.4	3 %	3 85	3.80 6.0, 11.7	477 20	3 91 3 8	3.84 9.6	3.50 9.6	3.76 6.4	131	5 10 3 9	3.76.3.88 10.2.3.3	3.94 4 02	373 3 51 6	68 5, 12 5
2	d_(a)b	Par	3.8	381.4	2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	2 12 4 5	3.35 37 93 63	75 1 23 3	5 11 0 5	3 95 2 4	3 97 9 5	3.90 9.5	3 65	3 85 2.1	3.76 5.7, 12.4							5 18 4 0	3.78.3.89 : 10.4.3.6 (396 403 05 60,60	3 74↔3	0/
=	d (1 €)	Abe	5 09 3 8		197	1 97	3.85 4 1.3 6	09 117	5 14 1 9	3.94 3.0	3.99 9.6	3.94 9.6	3 72	3.87	3 <i>7</i> 7 59,124							5 12 4 0	3 77 3.89 10 4 3.5	3 98 4 05 1 2	373 3 47 7	70 3,120
12	d→(a→)b	ν̈́τ	4 89	4 6 6 4 0 6	181 141 112	4 6 8 4	3.61 3 9.5 6	73 1 29 2	5 12 1.9	3.93 3.5	4 01 10 0	3.90 10.0	3 63	3.84 2.2	3 79 5 5, 12 0							3 8 18	3 79 3 89 4 10 4 3.6	4 00 4 03 1 0	3.75 3 6.5 7	68 5, 11 7

TABLE II

13C-N M R. CHEMICAL SHIFTS (8) FOR COMPOUNDS 1-5 AND 8-31

Сэтр.	Stracture	3,6 Dutelies	3													1		Contraction of the contraction o	***************************************		,					
					al control of the con			Activities	9			-		deplospecipal	3	nianykelindappelik	alpenden, de lista	Salina Springer Common		ופי	100	ĺ				
		Michaelbournessonickiesenschannessonickenschann	73	C.2	CS	C.	S	<i>C</i> -6	3	22	e.	57	C.S	C.6	C.1 C	CS C	C3	C4 C.5	S C6		C-1 C	C-2 C	C3 C	C-4 C	c.s	C.6
***	#P+c+d	Par	300.8						102.5	71.6		0 29		61.6											i	1.0
~	a→b→c→d	Abe	101.6	8.49	34.3	9.69	88	16.8	102.6	71.7		67.0		62.0	103.3	71.7	703	82.9 69.3	13.15		88	98.6	78.5 70	70.3	730	5.5
•	a	Tyv	102.5		• •				102.5	715		67.1		619												2.1
*	d~(a→)b~c	Par	100.7		, ,				101 4	79.7		67.5		61.7												2.1
s,	d→(a→)b→c	Abe	101.4		•				101	80.1		5.79		61.7												2 3
•	d-(a-)b-c	Ϋ́	102 1						100.9	797		67.4		9719												2.1
٠	d-(a-)b-c	Asc	9,98		.,				101	76.1		0.89		61.7												2.1
2	d_(a→)b	Par	100.2		•				8	4.6		9.79		9 19												23
=	d_(a→)b	Abe	101.5						88	80 2		67.7		61.9						21						2.4
2	ą.	Τχ	101.9		٠.				8	79.5		67.4		61.6						7						2.1
13	d-b-c								100.8	80 7		68.0		61.9	100.5 7	715 70	70.4 82	v,	68.5 18.0							2.1
7	PTOT A								102 5	71.6		2.19		61.9				S								6.1
15	qî.	Par	1008						99.5	71.1		0.79		8.19												
16	q .	Abc	101 7						\$ 5.	71.2		0.70		61.9												
17	a Ta	Abe	101 5	4.7	38	969	98.0	36.5	102.0	71.2		67.2		62.1												
**	a ta	J,	102 4						4.8	70.9		0.79		61.8												
61	Ĭ.								102.5	71.6	71.4	2.79	74.3	61.9	98.6 7	71.1 70	70.0 82	ci.	69 8 18.0	_						
8	Į.								102,4	71.3		67.5		617				4								
3 23	Įį								8	6	71.6	0 09	2.27	2 13				4			98.8 88.8 88.8	687	78.6 70	70.1	73.2 6	2 5
នេ		Par	99.1							3	,									4					-	7
2:		Abe	86.5	639	33 9	69.5	0.09	16.2																		
9		137	3																							
4 5																				φ. 3	98.6 28.0 38.0 38.0 38.0 38.0	69.2	70.6 70	70.3 27 5.05	729 6:1	62.2
8									99 2	70.7	712	67.4		5.13						•						i,
2									100.5	71.0	71.5	9.79	73.6	61.7												
85															98.6 7 100.6 7	70.6 70.77 11.17	70.9 71.3	72.8 72.9 69	70.6 17.5 69.4 17.5							

TABLE III $^{13}\text{C-n.m.r. Chemical shifts (8) for phage-derived oligosaccharides (a = Abe)}$

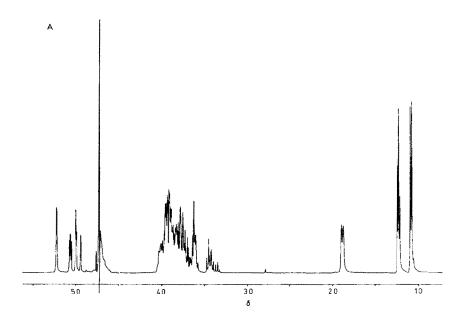
Compound (unit)	Atom					
	C-1	C-2	C-3	C-4	C-5	C-6
Tetrasaccharide						, Waster as in the
d	102.3	69.9	70.5	70.6	72.6	62.3
b	101.6	80.3	78.6	67.6	74.7	61.9
c; α	94.9	72.3	70.2	83.0	68.4	18.5
c; β	94.7	72.9	72.8	82.6	72.2	18.5
a	101.0	64.7	34.2	69.5	68.1	16.7
Octasaccharide						
d^a	102.3	69.8	70.5	70.5	72.5	62.2
d	102.3	69.1	78.2	70.2	72.5	62.1
b (2)	101.6	80.4	78.6	67.5	74.6	61.8
c	102.9	71.5	70.2	82.7	69.1	18.2
c; α	94.8	72.2	70.2	82.9	68.4	18.3
c; β	94.6	72.8	72.7	82.5	72.2	18.3
a (2)	100.8	64.5	34.1	69.4	68.0	16.6
Dodecasaccharide						
d^a	102.3	69.8	70.4	70.4	72.5	62.2
d (2)	102.3	69.1	78.2	70.2	72.5	62.1
b (3)	101.6	80.5	78.5	67.5	74.6	61.7
c (2)	102.9	71.5	70.2	82.7	69.1	18.2
c; α	94.8	72.2	70.2	82.9	68.4	18.2
c; β	94.6	72.8	72.7	82.5	72.2	18.2
a (3)	100.8	64.5	34.1	69.4	68.0	16.6
Hexadecasaccharide						
d^a	102.4	69.9	70.5	70.6	72.6	62.2
d (3)	102.4	69.2	78.3	70.3	72.6	62.1
b (4)	101.7	80.5	78.7	67.6	74.7	61.9
c(3)	103.0	71.6	70.3	82.8	69.1	18.3
ς; α	94.8	72.3	70.3	82.9	68.5	18.4
c; β	94.6	73.0	72.9	82.7	72.9	18.2
a (4)	100.9	64.6	34.2	69.5	68.1	16.7
Icosasaccharide						
d ^a	102.4	69.9	70.5	70.6	72.5	62.3
d (4)	102.3	69.2	78.3	70.3	72.6	62.2
b (5)	101.7	80.4	78.7	67.6	74.7	61.9
c (4)	103.0	71.6	70.3	82.8	69.1	18.3
c; α	94.9	72.3	70.3	83.0	V/12	18.3
c; β	94.7	72.7		82.6	72.3	18.3
a (5)	100.9	64.6	34.2	69.5	68.1	16.7

^aTerminal nonreducing d unit.

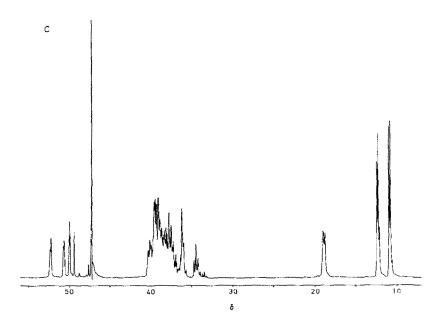
the ψ torsional angle by measuring the heteronuclear 3J coupling across the glycosidic linkage. In this way, a self-consistent conformational model is built up that agrees with HSEA calculations, and more importantly, accounts reliably and consistently for all features of the n.m.r. data¹³.

The n.m.r. measurements reported herein were performed first on synthetic saccharides 14-23, and then on oligosaccharides derived from the Salmonella serogroup B polysaccharide. The oligosaccharides 1-3 (ref. 14) and 4-8 (refs. 2, 15, 16) correspond to the biological and chemical repeating-units of Salmonella Serogroups A, B, and D₁, and in conjunction with the component tri- and di-saccharides were the subject of the initial n.m.r. studies. Although a related repeating-unit bearing an α -D-glucopyranosyl side-group was modeled in the preceding paper¹, no related experimental data are presented herein. Unambigous assignment of all ¹H and ¹³C resonances for the repeating units 1-9 was made possible through the wide range of component saccharides 17-24 10-31 (Tables I and II). The second set of oligosaccharides studied were those² derived by phage-mediated hydrolysis of the intact O-chain of serogroup B LPS. These compounds possess the branched, chemical, repeating-unit sequence $d\rightarrow(a\rightarrow)b\rightarrow c$, rather than the biological repeat unit a→b→c→d which terminates the O-chain. These compounds ranged in size from a single-tetrasaccharide repeating-unit up to an icosasaccharide composed of five repeating units. The ¹H-n.m.r. data for two of these compounds, tetrasaccharide 6 and octasaccharide 7, are recorded in Table I. The n.m.r. data accumulated for the synthetic compounds 1-31 (Tables I and II) permitted assignment of all aspects of the ¹H-n.m.r. data for 6 and 7, and ¹³C-n.m.r. data (Table III) for the tetra- to icosa-saccharides derived by phage-mediated hydrolysis.

The assignment of proton chemical-shifts for oligosaccharides is a routine procedure, and the methods employed have been adequately described in recent work⁶ and a detailed review article²⁵. In general, the approach has been to use double-resonance techniques and partly relaxed spectra, occasionally in conjunction with simultaneous double-resonance, and finally 2-D-*J*-resolved and 2-D-scalar-coupled experiments to construct a general framework of assignments. This served as the basis for complete assignments. In this regard, it may be noted that the deoxy groups of the 3,6-dideoxyhexose and L-rhamnose units permit particularly convenient connections to be established with the adjacent ring protons. The importance of this should not be overlooked since, even at the high magnetic-field-strengths employed, the concentration of 15–20 multiplets within the range δ 3.2–4.1 complicates the assignment task. Following ¹³C chemical-shift assignment, heteronuclear ¹³C–{¹H} decoupling confirmed existing assignments and established the identity of the remaining unassigned signals.


A basic assumption in the HSEA calculations of preferred oligosaccharide conformations is that the individual pyranose sugars adopt fairly rigid chain-conformations, which do not deviate appreciably from the orientations defined by the published coordinates of crystal structures. Inspection of proton ³J values for each of the component saccharides of structures 1–31 (Table I) support this assumption.

Examination of the proton chemical-shift data (Table I) revealed several examples of specific shielding of certain proton signals, and these may be correlated with short (<2.7 Å) proton-oxygen internuclear distances, which would exist in the preferred conformations calculated by the HSEA method^{3,4}. In all compounds containing the disaccharide sequence Abe-Man (a-b) (2, 5-7, 11, 16, and 17), the H-1(a) signal showed a downfield shift of 0.4 p.p.m. when compared with that of the methyl glycoside 24. Similar results were observed for the signals of H-1(a) of the paratose compounds 1, 4, 10, and 15, and also the tyvelose compounds 3, 8, 12, and 18, but not for the ascarylose isomer 9, if these compounds are compared with their respective methyl glycosides 23 and 25. In all the former sets of isomers, with the exception of the ascarylose-containing tetrasaccharide 9, the results are consistent with the distance of 2.6 Å between O-4(b) and H-1(a). In comparison, no short oxygen-proton distances could be identified that would explain the respective 0.13- and 0.32-p.p.m. downfield shifts of the H-1(b) resonance in disaccharides $b\rightarrow c$ (19, 20) or $d\rightarrow b$ (22) relative to the shift for the monosaccharide glycoside 29. Both effects are compounded in trisaccharide d→b→c (13), where the signal of H-1(b) is deshielded by 0.45 p.p.m. relative to that of the same compound 29. Again no short proton-oxygen distances were predicted by the calculations, but it is notable that several short proton-proton distances were identified. Thus, H-1(b) is situated at distances of 2.3, 2.5, and 2.6 Å from H-4(c), -6(c), and -5(d), respectively. The deshielding of H-1(b) was attributed to steric compression resulting from the concentration of protons in a compact, local area of the oligosaccharide surface. Support for this interpretation was found in the work of Winstein et al.26, who showed that compression of proton, Van der Waals radii at the bridge head of fused-ring systems causes strong proton deshielding. Deshielding of similar origin was observed in the case of 9 where the signal of H-2(b) is shifted by 0.2 p.p.m. relative to the same resonance in 8. Substitution of the D sugar (tyvelose) of 8 by the L enantiomer (ascarylose) (9) effectively interchanges the atoms of the 3,6 dideoxyhexose unit through a mirror plane defined by the atoms O-3(b), C-3(b), and H-3(b). Thus, H-1(a) and -2(a) are close to H-2(b), the signal of which was shifted downfield by 0.17 p.p.m. relative to the signal of H-2(b) in 8, owing to the densely packed cluster of hydrogen atoms, H-1(a), -2(a), -6(c), and -1(d) which occur in its vicinity. Other downfield shifts associated with the proximity of oxygen atoms and protons included those due to H-5(b) and O-3(c) (2.4 Å) which occurred for all compounds containing the disaccharide sequence b-c, i.e., 1-9, 13, 14, 19, and 20. Their ¹H-n.m.r. spectra exhibited a 0.3-0.4p.p.m. deshielding of the H-5(b) resonance relative to the corresponding chemical shift in the appropriate glycosides 28 or 29. It is necessary to compare the shifts for p-nitrophenyl glycosides with those of other p-nitrophenyl glycosides because this aglycon has a significant influence both upon the shift values of the sugar ring atoms to which it is glycosidically linked and also upon some resonances of the neighboring ring atoms. ¹H-N.m.r. spectra of 1-8, 14, and 21, which contain the disaccharide sequence c→d, exhibited a 0.3-p.p.m. deshielding of the H-1(c) resonance


relative to the signal of the appropriate glycosides 30 or 31, and this observation is consistent with the distance of H-1(c) to O-2(d) predicted by calculations. Finally, the signal of H-1(d), which is positioned at 2.5 Å from O-3(b) in 4-13 and 22, showed a 0.2-p.p.m. deshielding relative to that of H-1(d) in 26 or 27. Short distances between ring oxygen atoms and protons consistently failed to provide significant, specific deshielding of the corresponding proton resonances. Thus, despite such distances as H-2(b) to O-5(a) (2.6 Å), H-3(b) to O-5(a) (2.5 Å), or H-4(c) to O-5(b) (2.89 Å), the deshielding observed fell in the range of 0.1-0.15 p.p.m., a value that is considered to be below the resolving power of the HSEA and n.m.r. techniques to be adequately and consistently interpret²⁷. A possible explanation is the reduced electronegativity of an acetal oxygen atom when compared to the oxygen atom of hydroxyl groups²⁸.

Examination of the proton spectra obtained for the mono- to penta-saccharides resulting from phage-mediated hydrolysis of the bacterial polysaccharide showed that, when consideration was made for the presence of a reducing residue in 6 and 7, the chemical-shift values are in excellent agreement with those of the model compounds 2, 6, and 11. The proton shifts for the tetra- and octa-saccharides are recorded in Table I, and the proton spectra of 6 and 7 may be visually compared with those of the dodeca-, hexadeca-, and icosa-saccharides in Fig. 1.

Assignment of ¹³C chemical shifts was achieved by comparison of model compounds 1–31, as described in related work⁶ and a review article²⁵. Proton-coupled, ¹³C spectra and selective proton-irradiation were the principal methods for confirming the assignments (Table II). Heteronuclear-shift-correlated 2D spectra, in a few instances, confirmed the validity and self-consistency of assignments

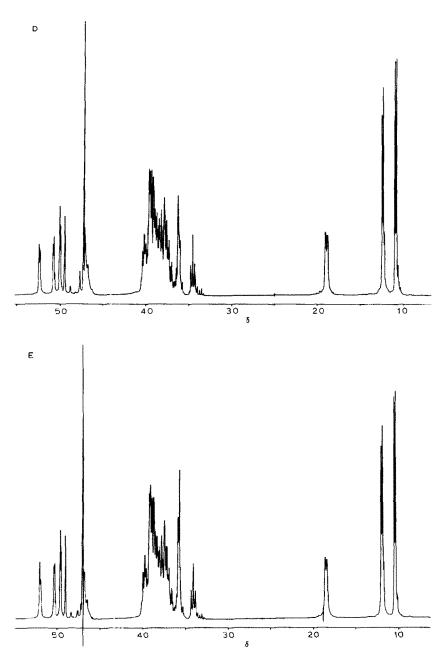


Fig. 1. (A) The 400-MHz 1 H-n.m.r. spectrum of the reducing tetrasaccharide $d \rightarrow (a \rightarrow) b \rightarrow c$ obtained by phage-associated enzyme hydrolysis of the serogroup B O-antigen. (B) The 400-MHz 1 H-n.m.r. spectrum of the octasaccharide, $[d \rightarrow (a \rightarrow) b \rightarrow c]_2$, obtained in similar fashion to the tetrasaccharide. (C) 1 H-N.m.r. spectrum of the dodecasaccharide $[d \rightarrow (a \rightarrow) b \rightarrow c]_3$. (D) 1 H-N.m.r. spectrum of the hexadecasaccharide. (E) 1 H-N.m.r. spectrum of the icosasaccharide showing the identical spectral features found for one to five repeating units.

for certain key structures. These assignments were readily extrapolated to provide complete identification of the phage-derived oligosaccharides (Table III). Relativeintensity differences allowed easy identification of the signals due to the terminal. reducing residues. The ¹³C-chemical shifts displayed no unusual values with the exception of those of compound 9, the ascarylose-containing tetrasaccharide $d\rightarrow (a\rightarrow)b\rightarrow c$. Although HSEA calculations indicated that the $a\rightarrow b$ linkage would possess ϕ, ψ torsional angles within the normal range for compound 9 (50°, 35°), ¹³C chemical shifts for C-1(a), -2(a), -4(a), and -5(a) of the ascarylose residue and also for C-2(b) of the D-mannose residue exhibited shift variations of 1.7-5.5 p.p.m. When compared to proton data, ¹³C-chemical shifts are relatively insensitive to conformational changes, and the observed shieldings for compound 9 reflects the crowding about the anomeric center of the ascarylose residue and H-2(b) of the Dmannose residue, which was also demonstrated by the n.O.e. data. The very large shielding of C-1(a) (~5.5 p.p.m.) most likely finds its origin in small valence or bond-angle deformations which result from the proton crowding previously discussed. Such changes, which are accompanied by different hybridization of the ¹³Cnucleus, are known to have a pronounced effect on ¹³C-chemical shifts²⁹. A similar change in 13 C-chemical shift has been observed when methyl α -D-mannopyranoside was glycosylated at O-3 with abequose (the D enantiomer) and colitose (the L enantiomer), respectively²³. It is notable that no significant changes of ¹³C-chemical shift were observed for either the L-rhamnose or the D-galactose residues of 9 relative to those of 8.

The correlation of chemical-shift data with internuclear distances supports the conformation predicted by HSEA calculations; however, n.O.e. measurements provide the strongest evidence in support of such preferred conformers. The treatment of n.O.e. data in terms of the minimum-energy conformation has been described previously^{3,5}. In brief, the magnitude of the n.O.e. depends upon the inverse sixth power of interproton distances, and these distances are, of course, available from the HSEA calculations. Summing the effects of these various H-H contributions, the anticipated relative n.O.e. values were calculated for the minimum-energy conformer by use of Equation 1,

n.O.e._d(s) =
$$r_{ds}^{-6}/(2 \sum_{j \neq d} r_{dj}^{-6})$$
 (1)

where the n.O.e. value refers to that observed on proton d when proton s is saturated. $r_{\rm ds}$ is the distance between protons d and s, and $r_{\rm dj}$ is the distance between proton d and other protons in the molecule.

These calculated values were compared (Table IV) with the observed n.O.e. values for model compounds 1–31 and the oligomeric structures. Experimentally, the n.O.e. values were determined in the difference mode, and it may be seen that the observed and calculated relative n.O.e. values are in good agreement (Table IV).

It is expected that, for glycosidic bonds whose conformation is dominated by

TABLEIV

Сотр	Proton saturated	1(a)	Ì	}	1(b)			2(b)			1(c)		6(c)b							1(4)				
}	Proton observed 2(a) 3(b)	2(a)	3(b)	2(b)	2(b)	4(c)	5(d)	I(a)	I(b)	1(d)	2(c)	3(d)	1(b)	2(b)c	4(c)	S(c)	3(d)	4(q)	S(d)	1(a)	2(a)	5(a)	2(6)	2(d)
		53(14)	47(13)	c	28(6)	72(14)	c				50(9)	50(9)												
		55(20)	50 45(16)	=	37(8)	63(14)	:					50(12)												
		59	41	0	23	7	0					46												
		39(5) 48	61(9)	0	23 (4)	(§) 14 (§)	0					50(10) 46												
		45(3)	55(4)	> 0	24(2)	54(4)	21(1)						6	9	23	65			4	¢	•	26(3)	27(3)	46(5)
		55(13)	50 45(11)	0	18(9)	54(26)	28(14)						13	9	25	7	S		Ξ	>	>	71 19(6)	27(9)	54(18)
		59	7	0	15	62	23													0	0	, 02	· 8	29
_		_	00(37)	0	22(9)	48(20)	30(12)				53(20)	47(18) 46	15	±	17	31			7	=	-	9(6)	34(23)	57(38,
			52(2)	-	12(1)	56(3)	31(2)					?	12	9	28	46			7	: (13(1)	30(5)	57(4)
		48 33(2)	\$2 41(2)	0 26(1)	15 17(6)	62 48(16)	23 35(12)	40(10)	22(7)	38(9)			10	∞	20	35	9	16	4	16(5)	16(5)	R	27(7)	41(11)
			29	28	15	79	23	47		35										4	6	20(5)	17	50 13
			(1) (1) (1)	0	43		57.7													0	0	21	19	5.
114.5			36(4)	-	40(2)		60(3)													-	0	24(2)	34(2)	38(3)
			57(10)	• •	48(8) 1.		52(8)														, ,	29(10)	34(12)	37(13)
			75	5	3/ 20(5)	60(16)	20(5)						12	œ	38	£	19			=	-	17	53(14)	47(13)
					21 32(7)	28	21 68(15)				01	(61)											73	82
					32		`8					901												
		50(16)	50(16)																					
		57(15)	43(12)																					
		53(18)	47(16)																					
		39(10)	47 61(16)																					
		&	76		41(8)	59(12)																		
					5	el S					50(13)	50(13)												
											ç	ì											56/10)	44(8)

"For each compound, relative observed n O e (%) for each saturation (upper line), experimental n.O.e. (%) (in parentheses, upper line), and relative calculated n O.e. (%) by use of Equation 1 (lower line) *Calculation of relative n O e. is was prohibited owing to rotation of the methyl group. 'Overlap of signals prohibited distinction of contributions from H-2(b) and -4(d), except in the case of compound 9 where the contribution to H-4(d) amounted to 16% "Obtained at 400 MHz, all other values recorded at 270 MHz. 'Simultaneous irradiation of H-3d(a) and -3e(a) gave considerable enhancement of anometre H-1(d) in addition to the enhancements within the a unit.

the exo-anomeric effect, the anomeric proton will be in close contact with the proton linked to the aglycon carbon atom³⁰. Consequently, a strong n.O.e. would be anticipated between these two protons spanning the glycosidic bond. This has been demonstrated so often³⁻⁸ that it is now regarded as common knowledge. Indeed, the effect is sufficiently general that it may be used to sequence oligosaccharides^{31,32}. Thus, irradiation of each anomeric resonance H-1(a)-(d) resulted in significant n.O.e.'s for H-3(b), -4(c), -3(d), and -2(b) (Table IV, compounds 1-22). Simultaneously, a n.O.e. was observed for H-2 of the ring whose anomeric proton was irradiated. This follows as this H-2 and the aglycon proton are at approximately equal distances from the anomeric hydrogen atom. The relative magnitudes of the n.O.e. are, however, not always equal (Table IV) because H-2 is enhanced in a manner dependent upon the orientation of neighboring protons (Equation 1), and this differs between hexopyranosides. In addition to these expected n.O.e.'s, others were observed that served to unambiguously define the relative disposition of the sugar rings. Thus, irradiation of H-1(d) (of the D-galactose unit) established the proximity of H-1(d) to H-5(a) (2.25 Å), thereby unequivocally identifying the disposition of the 3,6-dideoxyhexose ring in conjunction with the H-1(a)-H-3(b) distance of 2.42 Å, which was verified by the just mentioned n.O.e. Dispositions of hydrogen atoms about the glycosidic linkage d-b were further assisted by the n.O.e.'s observed on saturation of the H-1(b) resonance. In this case, H-5(d) showed an n.O.e. consistent with its 2.36-Å spacing from H-1(b) (compound 5 or 6). Irradiation of H-6(c) for the same compounds and also compound 13 showed that H-1(b), -2(b), -4(c), -5(c), and -5(d) receive comparable and significant n.O.e.'s. As previously stated in the section on ¹H-chemical-shift differences, H-1(b) is situated between 2.3–2.6 Å from each of the protons H-4(c) and -6(c). However, H-6(c) is also situated ~3.0 Å from H-5(d), but the latter proton is not the only one of the D-galactose (d)-unit to receive a n.O.e. when H-6(c) is saturated and the spectrum recorded at 270 MHz. Protons H-3(d) and -4(d), which are both positioned at least 5.5 Å from H-6(c), showed variable (depending upon the compound), but consistent n.O.e.'s. These may be attributed to the almost linear alignment of H-6(c), -5(d), and -3(d), or in some instances -4(d). This arrangement is known³³ to favor relayed n.O.e.'s. The spatial proximity of H-5(d), -4(d), and -3(d) and the potentially linear arrangement on the D-galactopyranoside ring of the pairs H-5(d)-H-4(d) and H-5(d)-H-3(d) require that these protons experience strong, mutual dipole-dipole relaxation. In addition a dipole-dipole relay may be established via the proximity of H-5(d) to H-6(c), when the H-6(c) resonance is saturated. In this manner, the n.O.e. is distributed to H-3(d) or -4(d), or both. This effect disappeared when the experiment was conducted at 400 MHz. Inspection of the stereo plots depicting the serogroup B repeating-unit in its preferred conformation (ref. 1, Fig. 6a) provided an appreciation of the arrangement of these atoms. With the exception of the L-rhamnose linkage c→d, two inter-ring n.O.e.'s were observed for each of the glycosidic bonds a→b, b→c, and d→b. Calculations predicted only one such n.O.e. for $c\rightarrow d$, H-1(c) to H-3(d), and this was observed

(Table IV). Finally, the fraudulent structure 9, in which ascarylose replaces tyvelose, exhibited a significant n.O.e. that differs from those observed for 8. Irradiation of H-1(a) of 9 resulted in a significant n.O.e. for H-2(b), in addition to H-3(b), which is a consequence of the reversed configuration of the dideoxyhexose of 9 relative to 8. Selective saturation of H-2(b), now made possible by deshielding due to high-proton density²⁶ as discussed earlier, gave, in addition to the predicted n.O.e.'s for H-1(b) and -1(d), a strong n.O.e. to H-1(a), thereby confirming the related arguments based on chemical-shift differences.

CONCLUSIONS

The ¹H- and ¹³C-chemical-shift data discussed herein, in conjunction with a substantial body of proton n.O.e. data, provided convincing evidence in support of the preferred conformation developed by HSEA calculations. Indeed, the number of connections established by the n.O.e.'s and specific chemical-shift differences require a very rigid arrangement of pyranose rings and glycosidic bonds with the exception of the L-rhamnose-to-D-galactose bond, which is the most flexible linkage.

That the anticipated conformation or conformers close to it are the most predominant is well demonstrated by the markedly different n.O.e.'s observed for 9. The substitution of an L- for a D-3,6-dideoxyhexose alters the conformation about a single linkage $a\rightarrow b$, but also dramatically changes the pattern of observable n.O.e.'s. In connection with this, it should be noted that the possible conformation for the D-mannose-to-L-rhamnose ($b\rightarrow c$) linkage discussed by Lipkind and Kochet-kov³⁴ is specifically excluded as a significantly populated conformer on the basis of the n.O.e.'s established by irradiation of H-6(c). If the ϕ_{bc} -13°, ψ_{bc} -170° conformer proposed by these authors were appreciably present, H-6(c) would no longer be close to H-1(b), -2(b), and H-5(d) [cf. Figs. 3 (ref. 1) with Figs. 2 herein], and the observed n.O.e.'s would be different.

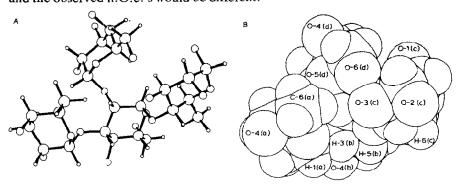


Fig. 2. The conformation of the *O*-specific tetrasaccharide $d\rightarrow (a\rightarrow)b\rightarrow c$ (a, Abe) of Salmonella sero-group B as determined by Lipkind and Kochetkov³⁴ with the following ϕ , ψ angles: $(\phi, \psi)_{ab} = -43.6$, 6.0°; $(\phi, \psi)_{bc} = -12.8$, -169.1°; and $(\phi, \psi)_{db} = -65.1$, -14.5°. (A) Stick and ball model; (B) CPK model.

The conclusion reached for the monomeric repeating-unit also applies to the oligomeric structures, since all features of ¹H- and ¹³C-chemical shifts of the monomers are duplicated in these structures as are the n.O.e.'s. Therefore the Ochain would, over a short range, closely correspond to the depicted model. As the chain extends beyond a relatively small number of repeating-units, the permissible amplitude for each glycosidic linkage and especially the c→d linkage would contribute to an overall flexibility consistent with the random-coil description of polysaccharide-solution characteristics³⁵.

This model adequately describes the immunodominance associated with 3,6-dideoxyhexose structure, and highlights potentially interesting features for further study. Thus the 6-deoxy group of the 3,6-dideoxyhexose residue is involved in an extensive hydrophobic surface that includes H-1 of the D-galactose residue, the α face of the mannose residue, and the 6-deoxy group of the L-rhamnose residue in combination with H-4 of this residue. At the same time, O-4 of abequose (Serogroup B) or O-2 of tyvelose (Serogroup D₁) are exposed on the edge of this surface. This would permit the known stereochemical dependence of serological specificity to be readily expressed.

EXPERIMENTAL

Compounds 1-31 and the phage-degraded oligosaccharides were available from previously reported work, as referenced in the legend to Scheme 1. 1 H-N.m.r. spectra were obtained at 310 K, for ~20mM solutions in $D_{2}O$ samples, with a Bruker HX-270 instrument operating at 270 MHz. The use of a spectral width of 3 kHz with a data memory of 32 k gave a digital resolution of ± 0.2 Hz. The pulse width used was 12 μ s (90°). Acetone (0.5%) was used as internal reference (δ = 2.225). Assignments were made by use of methods previously published²⁵. The nuclear-Overhauser-enhancement experiments were performed by the difference method³⁶ and are considered accurate to $\pm 10\%$.

The assignments of compounds 1 to 12 were confirmed by spectra obtained at 400 MHz or 500 MHz with Bruker WM-400 and WM-500 instruments, respectively. The assignment of compound 7 was confirmed by a 2-D-scalar-coupled experiment performed at 500 MHz. 13 C-N.m.r. spectra were obtained at 310 K, for 50mM solutions in D₂O samples, with a Bruker HX-270 instrument operating at 67.89 MHz. The use of a spectral width of 10 kHz with a data memory of 32 k gave a digital resolution of ± 0.6 Hz. The pulse width used was 12 μ s (90°). 1,4-Dioxane (1%) was used as internal reference (δ 67.4). Assignments were made as previously published²⁵. The 13 C-n.m.r. spectra of the phage-degraded oligosaccharides (5–10 mg) were obtained at 100 MHz with a Bruker WM-400 instrument. The assignment of compound 12 was confirmed by a 2-dimensional, proton-carbon correlated spectrum performed with a Bruker WM-500 n.m.r. instrument.

ACKNOWLEDGMENTS

The authors thank Professor Bengt Lindberg for his interest and encouragement. D.B.R. and K.B. acknowledge support from NATO (research grant No. 097.08). A grant for computing and the 270-MHz n.m.r. spectrometer were provided by the Danish Natural Science Research Council. The authors thank Dr. H. Thøgersen for access to 400-MHz facilities at Novo A/S, Denmark. Support was also provided by the following agencies: The Danish Technical Science Research Council, The Swedish Natural Research Council, The Swedish Board of Technical Development, and The Swedish Medical Research Council (grant No. 16X-656).

REFERENCES

- 1 K. BOCK, M. MELDAL, D. R. BUNDLE, T. IVERSEN, P. J. GAREGG, T. NORBERG, A. A. LINDBERG, AND S. B. SVENSON, Carbohydr. Res., 130 (1984) 23–34.
- S. B. SVENSON, J. LONNGREN, N. CARLIN, AND A. A. LINDBERG, J. Virol., (1979) 583

 –592.
- 3 R. U. LEMIEUX, K. BOCK, L. T. DELBAERE, S. KOTO, AND V. S. RAO, Can. J. Chem., 58 (1980) 631–653.
- 4 H. THØGERSEN, R. U. LEMIEUX, K. BOCK, AND B. MEYER, Can. J. Chem., 60 (1982) 44-57.
- 5 R. U. LEMIEUX AND K. BOCK, Jpn. J. Antibiot., 32, Suppl. (1979) \$163-\$172.
- 6 K. BOCK, S. JOSEPHSON, AND D. R. BUNDLE, J. Chem. Soc., Perkin Trans. 2, (1982) 59-70.
- 7 K. BOCK, J. ARNARP, AND J. LONNGREN, Eur. J. Biochem., 129 (1982) 171-178.
- 8 J.-R. BRISSON AND J. CARVER, Biochemistry, 22 (1983) 1362-1368.
- 9 F. KAUFFMANN, The Bacteriology of Enterobacteriaceae, 2nd edn., Munksgaard, Copenhagen, 1966.
- 10 O. LUDERITZ, A. M. STAUB, AND O. WESTPHAL, Bacteriol. Rev., 30 (1966) 192-255.
- 11 O. LUDERITZ, O. WESTPHAL, A. M. STAUB, AND H. NIKAIDO, in S. J. AJI., G. WEINBAUM, AND S. KADIS (Eds.), Microbial Toxins, Vol. 4. Academic Press, New York, 1971, pp. 145-233.
- 12 K. JANN AND O. WESTPHAL, in M. SELA (Ed.), *The Antigens*, Vol. 5, Academic Press, New York, 1975, pp. 1-125.
- 13 K. Bock, Pure Appl. Chem., 55 (1983) 605-622.
- 14 P. J. GAREGG AND T. NORBERG, J. Chem. Soc., Perkin Trans. 1, (1982) 2973-2982.
- 15 K. BOCK AND M. MELDAL, Acta Chem. Scand., Ser. B, in press.
- 16 K. BOCK AND M. MELDAL, Acta Chem. Scand., Ser. B, in press.
- 17 T. IVERSEN AND D R. BUNDLE, Carbohydr. Res., 103 (1982) 29-40.
- 18 B. M. PINTO AND D. R. BUNDLE, Carbohydr. Res., in press.
- 19 P. J. GAREGG AND B. GOTTHAMMAR, Carbohydr. Res., 58 (1977) 345-352.
- 20 K. EKLIND, P. J. GAREGG, AND B. GOTTHAMMAR, Acta Chem. Scand., Ser. B, 30 (1976) 305-308.
- 21 P. J. GAREGG, H. HULTBERG, AND T. NORBERG, Carbohydr, Res., 96 (1981) 59-64.
- 22 K. EKLIND, P. J. GAREGG, AND B. GOTTHAMMAR, Acta Chem. Scand., Ser. B, 30 (1976) 300-304.
- 23 K. BOCK AND M. MELDAL, Acta Chem. Scand., Ser. B, 37 (1983) 629-638
- 24 G. EKBORG, P. J. GAREGG, AND B. GOTTHAMMAR, Acta Chem. Scand., Ser. B, 29 (1975) 765-771.
- 25 K. BOCK AND H. THØGERSEN, Annu. Rep. NMR Spectrosc., 13 (1983) 1-57.
- 26 S. WINSTEIN, P. CARTER, F. A. L. ANET, AND A. J. R. BOURN, J. Am. Chem. Soc., 87 (1965) 5247—5249.
- 27 R. U. LEMIEUX AND K. BOCK, Arch. Biochem. Biophys., 221 (1983) 125-134.
- 28 G. A. JEFFREY AND S. TAKAGI, Acc. Chem. Res., 11 (1978) 266-270.
- 29 K. BOCK, J. DEFAYE, M. DRIGUEZ, AND E. BAR-GUILLOUX, Eur. J. Biochem., 131 (1983) 595-600.
- 30 R. U. LEMIEUX AND S. KOTO, Tetrahedron, 30 (1974) 1933-1944
- 31 A. A. GREY, S. NARASIMHAN, J.-R. BRISSON, H. SCHACHTER, AND J. P. CARVER, Can. J. Biochem., 60 (1982) 1123–1131
- 32 J. H. PRESTEGARD, T. A. W. KOERNER, JR., P.C. DEMOU, AND R. K. YU. J. Am. Chem. Soc., 104 (1982) 4993–4995.

- 33 J. H. NOGGLE AND R. E. SHIRMER, *The Nuclear Overhauser Effect*, Academic Press, New York, 1971.
- 34 G. M. LIPKIND AND N. K. KOCHETKOV, Bioorg. Khim., 6 (1980) 1817-1829.
- 35 D. A. BRANT, Q. Rev. Biophys., 9 (1976) 527-596.
- 36 R. RICHARZ AND K. WUTHRICH, J. Magn. Reson., 30 (1978) 147-150.